IBM Creates World’s First Artificial Phase-Change Neurons

An anonymous reader writes from a report via Ars Technica: IBM has created the world’s first artificial nanoscale stochastic phase-change neurons and has already created and used a population of 500 of them to process a signal in a similar manner as the brain. Ars Technica reports: “Like a biological neuron, IBM’s artificial neuron has inputs (dendrites), a neuronal membrane (lipid bilayer) around the spike generator (soma, nucleus), and an output (axon). There’s also a back-propagation link from the spike generator back to the inputs, to reinforce the strength of some input spikes. The key difference is in the neuronal membrane. In IBM’s neuron, the membrane is replaced with a small square of germanium-antimony-tellurium (GeSbTe or GST). GST, which happens to be the main active ingredient in rewritable optical discs, is a phase-change material. This means it can happily exist in two different phases (in this case crystalline and amorphous), and easily switch between the two, usually by applying heat (by way of laser or electricity). A phase-change material has very different physical properties depending on which phase it’s in: in the case of GST, its amorphous phase is an electrical insulator, while the crystalline phase conducts. With the artificial neurons, the square of GST begins life in its amorphous phase. Then, as spikes arrive from the inputs, the GST slowly begins to crystallize. Eventually, the GST crystallizes enough that it becomes conductive — and voila, electricity flows across the membrane and creates a spike. After an arbitrary refractory period (a resting period where something isn’t responsive to stimuli), the GST is reset back to its amorphous phase and the process begins again.” The research has been published via the journal Nature.


Share on Google+

Read more of this story at Slashdot.

Clip to Evernote

Leave a Reply

Your email address will not be published. Required fields are marked *